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Abstract 

This paper presents a simple semi-analytical approach for free vibration of cylindrical shell with initial prestress based 
on equivalent load method and the Donell-Mushtari theory. In most practical applications, shells are subjected to static 
loadings causing internal stress field. The presence of such initial forces like internal pressure, axial force, centripetal 
force and torque moment significantly affects the natural frequency spectra. According to Calladin’s equivalent load 
method initial stress field create additional curvatures and can be added as additional terms to the basic equations. The 
results of presented method agree well with experimental data found in the literature. Effects of elastic support 
stiffness, the shell length and radius to thickness ration on natural frequencies are investigated.  
 
© 2020 The Authors. Published by Elsevier B.V. 
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) 
Peer-review under responsibility of MedFract1 organizers 
Keywords: Cylindrical shells; initial stress;  

1. Introduction 

Cylindrical shells are the most studied type of shell and their behavior describes many theories and solutions. The 
approximate solutions of shells are presented in papers Matsunaga (2009), Qu et al (2013), Viola et al (2013), they are 
based on approximation theories and do not have high accuracy. Other solutions applied by Xing et al (2013), Tong et 
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al (2018) based on exact theories do not work for all types of boundary conditions. In most practical applications, 
shells are subjected to static loadings causing internal stress field. For example, reactor pressure vessel and nuclear 
piping experiencing significant stress due to internal pressure. Thus, it would be practically valuable to have unite 
solution that could be applied both for unloaded and prestressed shell. The effect of internal pressure on a cylindrical 
shell was considered using approximating theory of Love by Kandasamy et al (2016). Study of Isvandzibaei et al 
(2013) was conducted with first order shear deformation theory for cylindrical shells with ring support under internal 
pressure. The solutions for fluid-filled cylindrical shells are discussed for example in Vamsi Krishna and Ganesan 
(2006) and Daud and Viswanathan (2019). Shells under arbitrary boundary conditions and with varied initial stresses 
in different longitudinal sections are analyzed by Li et al (2011). All these solutions are very specialized, do not cover 
all types of boundary conditions and all possible stress field. Thus, it would be valuable to have a simple and versatile 
engineering solution for prestressed cylindrical shell vibrations, which will cover all types of boundary conditions 
including elastic supports. 

The studies were conducted using the equivalent load method, which was proposed by Calladine (1972) for study 
shells with shape imperfections like geometrical defects. Method essence lies in the fact that these imperfections create 
additional curvatures on which additional loads arise. Calladine (1972) proposed to consider the stress state of shells 
as a superposition of two states: an ideal shell with external loads and an ideal shell with an equivalent system of 
loading arising from shape imperfections: 

2       + +x xx x xp N N N     (1) 

This method has proved its practical application for small geometry imperfections, thus goal of this work is to 
expand it to the study of vibrations of shells with initial stresses. This work concentrates on study the most important 
uniform prestress (not varying with the spatial coordinates, x and φ). These loads can occur, for example, for 
pressurized (internal or external) cylinders, or for shells spinning about their longitudinal axes. 
 
Nomenclature 

R, h, L   mean radius, shell thickness and length 
, , E   Young's modulus, Poisson ratio and density of shell material 

   frequency 
, xN N   axial and circumferential normal forces 

xN   shear force 

,xQ Q   axial and circumferential bending forces 
, ,u v w   axial, circumferential and radial displacements 
,m n   wave number in circumferential and axial direction 

,xx    bending strains in axial and circumferential direction 

x   bending strain of torque 

, ,P N M  pressure, axial force and torque moment 

, , x xN N N  forces in shell from initial stresses 
2(1 )H Eh = −  shell extensional modulus. 

2. Mathematical formulation 

According to the Donell-Mushtari thin shell theory, the governing balance equations for free vibration analysis of 
a uniform circular cylindrical shell are written as: 

http://crossmark.crossref.org/dialog/?doi=10.1016/j.prostr.2020.06.055&domain=pdf
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Here over dots , ,u v w denotes double time derivatives of displacements. The initial stresses in the shell from the 

internal (external) pressure  =N PR , axial force 2=xN N R , rotational speed 
2 2N hR  =  and torque 

moment 22 =x torN M R , form the following curvatures: 

2 2 2
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We have to add these terms only in equation (4):  
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   (6) 

Using the calculation procedure given in our previous work Dubyk et al (2018a), by combining the static equations 
with the physical and geometric, we obtain an eighth-order differential equation. Using the expansion of eight 
parameters in trigonometric series: 

0 1
cos   or   sinn n

n n
n n   

= =

   =  
 
    (7) 

We can obtain a system of eight ordinary differential equations, in which only one equation for 
( )xdq x

dx
 is changed. 

A full system of eight ordinary differential equations describing a prestressed cylindrical shell: 
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Here we used notation 2 2 R
E
 = ,

2

12
h =  

System of eq. (8)-(15) can be easily solved using expansion in ordinary polynomials for axial coordinate 
0 1 2, , ...x x x  For sake of simplicity the solution is rewritten using the method of initial parameters: 
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0 11 12 13

2 3
0 81 82 83

...
...

...

x x

x x

n x n C x C x C x

x C x C x C x 

= +  +  +  +

= +  +  +  +

    (16) 

It is practical to limit our solution with fourth degree polynomials and to achieve good accuracy we can just 
‘slice’ our shell in axial direction, for every sliced part solution (16) is applied. At each edge of the shell four boundary 
conditions must be specified. They can be generalized by the following equations: 

x
x w

M
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    (17) 

x xM k =     (18) 
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System of eq. (8)-(15) can be easily solved using expansion in ordinary polynomials for axial coordinate 
0 1 2, , ...x x x  For sake of simplicity the solution is rewritten using the method of initial parameters: 
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It is practical to limit our solution with fourth degree polynomials and to achieve good accuracy we can just 
‘slice’ our shell in axial direction, for every sliced part solution (16) is applied. At each edge of the shell four boundary 
conditions must be specified. They can be generalized by the following equations: 
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x uN k u=     (19) 

1
x x vN M k v

R − =     (20) 

Here , , ,u v wk k k k −  stands for axial circumferential, radial and rotational spring stiffness, i.e. eq.(17)-(20) is a 
general type elastically supported edge. If we consider 0u v wk k k k= = = =  we will get free edge ‘F’ and opposite

u v wk k k k= = = =  is a clamped edge ‘C’. A full description of the possible boundary conditions is also presented 
in paper Dubyk et al (2018a). 

3. Results and discussion 

The proposed semi-analytical method is applied to calculate natural frequencies of circular cylindrical shells 
with arbitrary boundary conditions and initial prestress. But before it we have checked the convergency criteria for 
proposed semi-analytical method, depending on the division in axial direction (Fig.1). It can be seen that 50 divisions 
in axial direction are quite enough, also it is possible to limit our solution with polynomials of 3rd grade. 

 

 

Fig. 1. Natural frequencies of the cylindrical shell versus number of divisions in axial direction: C-F, L = 1.25; R = 0.25; h = 0.008. 

In Fig. 2-Fig. 3 the present method is validated by comparing with data published in literature. Comparison is 
made for axial and circumferential prestress, for two types of boundary conditions: simply supported and clamped. 
From the analysis of experimental and calculated data for the simply supported shell (see Fig. 2), it follows that the 
axial force significantly reduces the frequency values when the number of axial and circumferential waves is greater 
than unity. The same behavior can be seen in Fig 3, where the influence of circumferential and combined axial and 
circumferential prestress is analyzed. In Fig. 4 influence of the increasing internal pressure on natural frequencies is 
demonstrated. We can note that due to the supporting action of internal pressure, the frequencies of the cylindrical 
shell increase.  
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Fig. 2. Natural frequencies of the simply supported shell S-S L/R=19.33, R/h =150, μ=0.3, without loads (a) with axial force (b) experimental 
data obtained by Herrmann and Shaw (1965): (□) n=2, n=8, (◊) n = 3, n=9, (∆) n = 4, (▼) n = 5, (×) n = 6, (○) n=7,                    our solution. 

 

Fig. 3. Natural frequencies of the simply supported shell S-S L/R=19.33, R/h =150, μ=0.3, with internal pressure (a) with combine internal 
pressure and axial force (b) experimental data obtained by Herrmann and Shaw (1965) (□) n=2, (◊) n = 3, (∆) n = 4, (▼) n = 5, (×) n = 6, (○) 
n=7,                     our solution. 
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Fig. 4. Natural frequencies of the clamped supported shell C-C μ=0.32, L/R=6, R/h =601 (a) та R/h =666 (b) with internal pressure for m=1: 
experimental data obtained by Miserentino and Vosteen (1965) for (a): (○) P=0 kPа, (□) P=13.8 kPа, (◊) P = 48.3 kPа, (∆) P = 62.1 kPа, for (b): 
(○) P=0 kPа, (□) P=20 kPа, (◊) P = 29.6 kPа, (∆) P = 55.8 kPа, (▼) P = 60 kPа,                     our solution. 

Having gained confidence in the present method, natural frequencies of a circular cylindrical shell with elastically 
supported boundary conditions are calculated eq.(17)-(20). Presented in Table.1 results with no initial prestress 
coincide with presented by Dai et al. (2013). 

Table 1. Natural frequencies of clamped-elastically supported shell: l=1.25m, R=0.25m, h=0.008m, 
E=210GPa, ρ=7800kg/m3, µ=0.3, ku=kv=kγ=0 

Mode kw / H=0 kw / H=0.01 kw / H=0.1 kw / H=1 kw / H=1e6 kw / H=1e8 

No initial prestress 

1 131.6 183.4 299.1 316.0 316.6 316.6 

2 247.0 278.2 310.8 340.7 345.9 345.9 

3 262.9 279.9 365.5 476.1 492.1 492.1 

4 374.8 402.9 490.8 492.0 505.4 505.4 

Axial prestress 0.001xN H=  

1 124.7 187.8 312.6 327.1 327.7 327.7 

2 235.7 280.4 321.6 351.8 356.5 356.5 

3 262.9 282.7 378.8 494.4 499.6 499.6 

4 382.5 412.6 498.0 499.4 523.2 523.2 

Circumferential prestress 0.001N H =  

1 214.3 249.5 343.5 380.1 384.7 384.7 

2 262.9 279.9 365.4 430.8 431.2 431.2 

3 383.7 404.4 427.1 476.1 505.3 505.3 

4 474.9 497.4 603.5 640.9 641.0 641.0 
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Results presented in Fig.2-4 and Table 1 show that, the proposed semi-analytical method agree well with those data 
presented in the published literature. Thus, the present method can be used for high accuracy modeling of forced 
vibration or dynamic analysis of loaded constructions (for example see analysis of water hammer event in Dubyk et 
al. (2018b)), that can be schematized as cylindrical shells. 

4. Conclusions 

In this work an accurate semi-analytical solution of free vibration frequencies of prestressed cylindrical shell, based 
on the Donell-Mushtari theory, is obtained using polynomials expansion in axial directions and Fourier series in circum-
ferential direction: 
• Eight main variables are selected, they are used to write out all the equations and boundary conditions. This formulation 

allowed us to solve a system of partial differential equations using series expansion. Also, this formulation is 
suitable to address elastically supported edges, which are generalization of classical boundary conditions.  

• Our solution is versatile and can be easily extended to account for initial stresses like axial force, pressure (internal 
and external), torque moment and centripetal force. We just need to adjust third balance equation for initial prestress. 
These results were checked against experimental data and good convergency for low frequency spectra is obtained. 
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